Middle East Respiratory Syndrome Coronavirus Recombination and the Evolution of Science and Public Health in China
نویسنده
چکیده
Since the discovery of Middle East respiratory syndrome coronavirus (MERS-CoV) in late 2012, more than 1,400 people have received a laboratory diagnosis of MERS and over 450 people have died. Most of the cases have been documented on the Arabian Peninsula; however, sporadic cases have also been reported in Europe and Asia in travelers returning from the Middle East. Except in South Korea, the imported MERS-CoV has not established a substantive chain of infection beyond the index traveler case. The spread within South Korea to 186 people, resulting in 36 deaths, has been attributed to a delay in diagnosis and isolation of the index case, lapses in infection control, and care of patients by family members rather than trained medical staff. This interpretation was supported by a preliminary report from a World Health Organization panel wherein no mutations linked to transmissibility or pathogenesis were found in sequences obtained in South Korea and China. However, in a recent mBio article, Wang and colleagues report detailed genomic analysis of the virus implicated in the first known case of MERS in China (1). They describe 11 amino acid substitutions, 8 of them shared with the South Korean strain and MERS-CoV strains recently circulating in Saudi Arabia, and define a recombination event that they speculate may have contributed to enhanced human-to-human transmission of MERS-CoV and the rapid spread of the virus in South Korea. Recombination is common in coronaviruses and has been implicated in the emergence of pathogenic coronaviruses in poultry, cats, and pigs (2, 3). It would not be surprising, therefore, if recombination were to occur in MERS-CoV and to result in enhanced transmission or virulence. Wang et al. clearly demonstrate through bootstrap scanning and single-nucleotide polymorphism analyses that the viruses found in South Korea and China represent a recombinant virus that contains a clade B group 3 coronavirus sequence in the 5= portion of the genome and a clade B group 5 coronavirus sequence in the 3= end of the genome, with a site of recombination between nucleotide positions 17206 and 17311, a region that spans the junction between the ORF1a and S genes. They note that the recombination is evident in recent strains identified in human cases of MERS in Saudi Arabia and estimate that the recombination occurred in Saudi Arabia in the later months of 2014. The paper is important in two respects. First, the recombination event may have resulted in the evolution of a new lineage of MERS-CoV with different transmission properties. Additional field work in epidemiology and studies of recombinant viruses in culture and in animal models will be required to determine whether this proves true. However, the paper itself is evidence of an evolutionary advance in scientific expertise and transparency that is at least as important for microbiology and public health. China has come a long way since the emergence of SARS-CoV in 2002/2003.
منابع مشابه
Coronavirus 2 Acute respiratory syndrome: Emergence, Evolution and thrapeutic prevention strategies
The ongoing outbreak of COVID-19 that began in Wuhan, China, has constituted a Public Health Emergency of International Concern, and spread all over the world. In a phylogenetic network analysis of human severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) genomes, three central variants were distinguished by amino acid changes, which named A, B, and C; with A being the ancestral type a...
متن کاملA Review of Coronavirus Disease-2019 (COVID-19)
There is a new public health crises threatening the world with the emergence and spread of 2019 novel coronavirus (2019-nCoV). The virus originated in bats and was transmitted to humans through yet unknown intermediary animals in Wuhan, China in December 2019. The virus spreads faster than its two ancestors the SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), but has lower ...
متن کاملGenetics and epidemiology of Middle East Respiratory Syndrome-Coronavirus (MERS-CoV)
Background and aims: Middle East respiratory syndrome (MERS) is a viral respiratory illness caused by a coronavirus. After the primary onset of MERS in Saudi Arabia, in September 2015 cases began to increase. The number of laboratory-affirmed cases by MERS-CoV in the Middle East has been being increased recently. Methods: In this current review article, by using the terms “MERS” and “coronavir...
متن کاملStudy of the Clinical and Radiologic findings of Middle East Respiratory Syndrome and Coronavirus Disease-2019
Aim and Background: Severe Acute Respiratory Syndrome Corona Virus (SARS-CoV-2) is a single-strand RNA, β‐coronavirus with mostly respiratory symptoms responsible for Corona Virus Disease (COVID-19), which causes a pandemic worldwide. This novel coronavirus is associated with severe pneumonia and Acute Respiratory Distress Syndrome (ARDS). Middle East Respiratory Syndrome (MERS-CoV) is another ...
متن کاملMiddle East Respiratory Syndrome Coronavirus (MERS-CoV): A Review Article
The recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in the Middle East region in 2012. The virus is phylogenetically related to bat CoV, but other animal species like camels and goats may potentially act as an intermediate host by spreading the virus to humans. This virus is thought to cause a severe disease in patients with underlying comorbidities. Laboratory ...
متن کامل